解幾何題時(shí),當(dāng)題目給出的條件不夠時(shí),我們常通過添加輔助線構(gòu)成新圖形,形成新關(guān)系,使分散的條件集中,把問題轉(zhuǎn)化為自己能解決的問題,這便是輔助線的作用。
1
口訣:注意點(diǎn)
輔助線,是虛線,畫圖注意勿改變。
假如圖形較分散,對(duì)稱旋轉(zhuǎn)去實(shí)驗(yàn)。
基本作圖很關(guān)鍵,平時(shí)掌握要熟練。
解題還要心眼多,經(jīng)??偨Y(jié)方法顯。
切勿盲目亂添線,方法靈活應(yīng)多變。
分析綜合方法選,困難再多也會(huì)減。
2
口訣:三角形
圖中有角平分線,可向兩邊作垂線。
也可將圖對(duì)折看,對(duì)稱以后關(guān)系現(xiàn)。
角平分線平行線,等腰三角形來添。
角平分線加垂線,三線合一試試看。
線段垂直平分線,常向兩端把線看。
線段和差及倍半,延長(zhǎng)縮短可試驗(yàn)。
線段和差不等式,移到同一三角去。
三角形中兩中點(diǎn),連接則成中位線。
三角形中有中線,延長(zhǎng)中線等中線。
3
口訣:四邊形
?
平行四邊形出現(xiàn),對(duì)稱中心等分點(diǎn)。
梯形問題巧轉(zhuǎn)換,變?yōu)?/span>形和?形。
平移腰,移對(duì)角,兩腰延長(zhǎng)作出高。
如果出現(xiàn)腰中點(diǎn),細(xì)心連上中位線。
上述方法不奏效,過腰中點(diǎn)全等造。
證相似,比線段,添線平行成習(xí)慣。
等積式子比例換,尋找線段很關(guān)鍵。
直接證明有困難,等量代換少麻煩。
斜邊上面作高線,比例中項(xiàng)一大片。
4
口訣:圓形
半徑與弦長(zhǎng)計(jì)算,弦心距來中間站。
圓上若有一切線,切點(diǎn)圓心半徑連。
切線長(zhǎng)度的計(jì)算,勾股定理最方便。
要想證明是切線,半徑垂線仔細(xì)辨。
是直徑,成半圓,想成直角徑連弦。
弧有中點(diǎn)圓心連,垂徑定理要記全。
圓周角邊兩條弦,直徑和弦端點(diǎn)連。
弦切角邊切線弦,同弧對(duì)角等找完。
要想做個(gè)外接圓,各邊作出中垂線。
還要作個(gè)內(nèi)接圓,內(nèi)角平分線夢(mèng)圓。
如果遇到相交圓,不要忘作公共弦。
內(nèi)外相切的兩圓,經(jīng)過切點(diǎn)公切線。
若是添上連心線,切點(diǎn)肯定在上面。
要作等角添個(gè)圓,證明題目少困難。